КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. аль-Фараби

Факультет физико-технический

Образовательная программа по специальности 5В071000 - Материаловедение и технология новых материалов

Утверждено

на заседании Ученого совета Физико-технического факультета Протокол № 6 от 27 июня 2014 г.

Декан факультета

А. Е. Давлетов

СИЛЛАБУС

Оптоэлектронные приборы

4 курс, p/o, семестр осенний, 3 кредита (2+1+0)

Лектор (лекции, семинары, СРС): старший преподаватель КФТТиНФ

Мигунова Анастасия Анатольевна

Телефон: 3773412 (КФТТиНФ), моб. 87054433515

e-mail: anastassiya.migunova@gmail.com

каб. 528, 349

Цель и задачи дисциплины

Цель: Изучить физические процессы в оптоэлектронных приборах, их принципы функционирования и характеристики.

Задачи: Приобретение базовых знаний по основным типам оптоэлектронных приборов, использующих в работе различные поверхностные и контактные явления в полупроводниках, излучающие и поглощающие световые волны видимого, УФ- и ИК-диапазонов электромагнитного спектра.

Компетенции (результаты обучения): Ознакомление с работой приемников и источников излучения, умение рассчитывать параметры солнечных элементов, фотодетекторов, ПЗСматриц, ФЭУ, светоизлучающих диодов, лазеров, оптопар, световодов, некоторых комбинаций приборов, использующих генерацию, преобразование и передачу оптических сигналов.

Пререквизиты: дисциплины по специальности 5В071000: «Математический анализ научных исследований» (1 курс), «Электричество и магнетизм» (2 курс), «Оптика» (2 курс), «Лабораторный практикум оптическим устройствам» ПО (3 курс), «Физика конденсированного состояния» KVDC). «Основы нанотехнологий» (3 «Нанотехнологии в материаловедении» (3 курс), «Физические свойства материалов» (3 курс), «Физическое материаловедение» (3 курс), «Технологическое оборудование производств материалов» (3 курс).

Постреквизиты: Знания и навыки проведения расчетов, полученные в предлагаемой дисциплине, необходимы при подготовке дипломных работ.

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

He-		Кол-	Макси-	
де-	Название темы	во	мальный	
ЛЯ		часов	балл	
	Модуль 1 Приемники оптического излучения			
1	Лекции 1-2. Принцип работы солнечных элементов. Вольт-	2	0	
	амперная характеристика. Спектральная характеристика.			
	Атмосферная масса			
	Семинар 1. Расчет последовательного, шунтирующего	1	11	
	сопротивления, обратного тока и КПД СЭ. Расчет коэффициента			
	собирания СЭ			
	СРСП 1. Встроенные тянущие поля в солнечных элементах.	1	3	
	Солнечные элементы на аморфном кремнии. Солнечные элементы			
	на монокристаллическом кремнии. Солнечные элементы на			
	мультикристаллическом кремнии			
2	Лекции 3-4. Имитаторы солнечного излучения. Концентраторы	2	0	
	солнечного излучения. Пути повышения КПД солнечных			
	элементов			
	Семинар 2. Расчет солнечных элементах в концентраторных	1	10	
	установках	4		
	СРСП 2. Пассивация солнечных элементов. Фиолетовые солнечные	1	3	
	элементы	2	0	
3	Лекции 5-6. Гетеропереходные солнечные элементы и их	2	0	
	характеристики. Каскадные СЭ	1	10	
	Семинар 3. Расчет и построение зонных диаграмм	1	12	
	гетеропереходных СЭ	1	2	
	СРСП 3. Варизонные структуры на основе Al _x Ga _{1-x} As. Солнечные	1	3	
	элементы с ІТО-антиотражающими покрытиями. Тонкопленочные			
4	Солнечные элементы на основе сульфидов	2	0	
4	Лекции 7-8. Выбор материала для солнечных элементов. Характеристики материала, влияющие на КПД. Потери	2	U	
	эффективности в солнечных элементах и способы борьбы с ними.			
	Эталонные солнечные элементы			
	Семинар 4. Расчет внешнего и внутреннего квантового выхода СЭ	1	11	
	СРСП 4. Рекордные солнечные элементы на монокристаллическом	1	3	
	кремнии. Рекордные солнечные элементы на арсениде галлия	1	3	
5	Лекции 9-10. Анализ оптических характеристик полупроводника	2	0	
	по соотношениям Крамерса-Кронига	_	O O	
	Практическое занятие (семинар) 5. Расчет оптических функций по	1	13	
	спектрам отражения: фазы отраженнной волны θ , показателя			
	преломления n и поглощения k , комплексной диэлектрической			
	проницаемости ε, коэффициента поглощения α			
	СРСП 5. Солнечные элементы с рельефными поверхностями.	1	3	
	Прямая и инвертированная текстуры. Солнечные элементы с двумя	_		
	фотоприемными поверхностями			
6	Лекции 11-12. Фотоприемники и их параметры. Фоторезисторы.	2	0	
	Фотодиоды. Лавинные фотодиоды.			
	Семинар 6. Расчет лавинных фотодиодов	1	11	
	СРСП 6. Фотодиоды с <i>p-i-n</i> структурой. Фотодиоды Шоттки.	1	3	
	Фототранзисторы. Фотоприемники с зарядовой связью – ПЗС-			
	матрицы			

7	Лекции 13-14. Формирование <i>p-n</i> переходов в СЭ методом	2	0
,	диффузии	2	U
	Семинар 7. Расчет прямой и обратной задач проведения	1	11
	двухстадийной диффузии (загонка и разгонка примеси),		
	определение глубины залегания перехода и концентрационных		
	профилей $C(x,t)$ для каждой стадии диффузии		
	СРСП 7. Эпитаксиальный метод получения гетероструктур. Ионная		3
	имплантация в создании барьерных структур. Формирование		
	омических контактов к СЭ методом трафаретной печати.		
	Формирование контактов резистивным испарением металлов.		
	Электрохимический и химический способы создания контактов		
	1 Рубежный контроль		100
8	Лекции 13-14. Принципы работы ФЭУ и болометров. Принцип	2	0
	работы ПЗС-матриц		
	Семинар 8. Расчет ПЗС-матрицы	1	11
	MidTermExam	2	100
	Модуль 2 - Источники оптического излучения		
9	Лекции 15-16. Виды генераци оптического излучения.	2	0
	Люминесценция. Прямозонные и непрямозонные полупроводники		
	Семинар 9. Определение ширины запрещенной зоны	1	11
	полупроводников по спектрам люминесценции		
	СРСП 9.	1	3
10	Лекции 17-18. Принцип работы и электрические характеристики	2	0
	светоизлучающих диодов (зонная диаграмма, ВАХ). Оптические		
	характеристики СИД (мощность, внутренний и внешний квантовый		
	выход, КПД, спектр излучения, угловое распределение излучения,		
	индикатрисы рассеяния)		
	Семинар 10. Расчет электрических и оптических параметров СИД	1	12
	СРСП 10. Особенности СИД с высоким внутренним квантовым	1	3
	выходом излучения. СИД на гетеропереходах.		
11	Лекции 19-20. Расчет цветовых характеристик СИД с	2	0
	использованием цветового локуса и RGB-координат		
	Семинар 11. Расчет цветовых характеристик СИД	1	12
	СРСП 11. Технология OLED. Жидкокристаллические индикаторы	1	3
12	Лекции 21-22. Принцип работы лазеров (спонтанное и	2	0
	вынужденное излучение, система накачки, активная среда,		
	оптический резонатор и его собственные частоты)		
	Семинар 12. Решение задач на определение параметров	1	12
	резонаторов, длительности импульсов, цвета излучения		
	СРСП 12. УФ-лазеры. Схема энергетических уровней	1	3
	аргонового лазера		
13	Лекции 23-24. Основные характеристики лазеров (длина волны,	2	0
	длительность импульсов, расходимость пучка, поляризация,		
	мощность излучения, добротность, КПД). Лазерное усиление и		
	генерация (инжекция носителей заряда, порог инверсии, понятие		
	положительной обратной связи, образование «фотонной лавины»)		
	Семинар 13. Решение задач на определение мощности, плотности	1	12
	мощности, яркости, энергии импульса лазеров		
	СРСП 13. Принцип записи и считывания информации на СО-	1	3
	дисках. Особенности рубинового, Nd:YAG, Ti:Sa лазеров.		
	Иразеры. Энергетические уровни СО2-лазера.		
14	Лекции 25-26. Физические основы модуляции лазерного	2	0

излучения. Продольные и поперечные лазерные моды		
Семинар 14. Расчет лазера на родамине-6Ж	1	12
СРСП 14. Конструкция, энергетическая зонная диаграмма и	1	3
характеристики лазеров на парах металлов, на красителях.		
2 Рубежный контроль	1	100
Экзамен		100

Итоговая оценка по дисциплине = $\frac{PK1 + PK2}{2} \cdot 0.6 + 0.1MT + 0.3ИK$

Здесь РК1, РК2 – оценки рубежного контроля (сумма оценок текущего контроля), МТ – оценка за Midterm Exam; ИК – оценка итогового контроля (экзамен во время сессии). Итоговая оценка по дисциплине рассчитывается и округляется в системе «Универ» автоматически.

На одной неделе допускается выставление не более 50 баллов по одной дисциплине.

СПИСОК ЛИТЕРАТУРЫ

Основная:

- Шуберт Ф. Е. Светодиоды. М.: Физматлит. -2008. 496 с.
- 2 Вигдорович Е. Н. Физические основы, конструкция и технология оптоэлектронных устройств. М.: МГУПИ. 2011. 205 с.
- 3 Айхлер Ю., Айхлер Г. И. Лазеры: исполнение, управление, применение. М.: Техносфера. -2008.-440 с.
- 4 Звелто О. Принципы лазеров. 2008. 720 с.
- 5 Бугров В. Е., Виноградова К. А. Оптоэлектроника светодиодов. Учебное пособие. СПб: НИУ ИТМО. 2013. 174 с.
- 6 Semiconductor lasers. Fundamentals and applications. Edited by Alexei Baranov and Eric Tournie. Woodhead Publishing Ltd. 2013. 662 p.
- 7 Игнатов А. Н. Оптоэлектронные приборы и устройства. Учебное пособие. М.: Эко-Трендз. 2006. 272 с.
- 8 Крылов К. И., Прокопенко В. Т., Тарлыков В. А. Основы лазерной техники: Учебное пособие для студентов приборостроительных специальностей ВУЗов. Л.: Машиностроение. 1990. 316 с.
- 9 Суэмацу Я., Катаока С., Кисино К., Кокубун Я., Судзуки Т., Исии О., Ёнэдзава С. Основы оптоэлектроники. Перевод с японского. М.: Мир. 1988. 288 с.
- 10 Васильев А. М., Ландсман А. П. Полупроводниковые фотопреобразователи. М.- 1971, 248 с.
- 11 Фаренбрух А., Бьюб Р. Солнечные элементы: теория и эксперимент. 1987. 280 с.
- 12 Колтун М. М. Оптика и метрология солнечных элементов. 1985. 280 с.
- 13 Колтун М. М. Солнечные элементы. 1987. 190 с.
- 14 Амброзяк А. Конструкция и технология полупроводниковых фотоэлектрических приборов. 1970. 392 с.
- 15 Гуртов В.А. Твердотельная электроника. М.: Техносфера. 2005. 408 с.
- 16 Шалимова К. В. Физика полупроводников. М.: Энергоатомиздат. 1985. 392 с.
- 17 Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. СПб: Лань. 2002. 480 с.
- 18 Зи С. Физика полупроводниковых приборов. М.: Мир. 1984. 912 с.
- 19 Шарупич Л. С., Тугов Н. М. Оптоэлектроника. М.: Энергоатомиздат. 1984. 256 с.
- 20 Носов Ю. Р. Оптоэлектроника. М.: Радио и связь. 1989. 360 с.
- 21 Чопра К., Дас С. Тонкопленочные солнечные элементы. М.: Мир. 1986. 435 с.
- 22 Мартынов В. Н., Кольцов Г. И. Полупроводниковая оптоэлектроника. М.: МИСИС. $1999.-400~\mathrm{c}$.

Дополнительная:

- 23 Раушенбах Γ . Справочник по проектированию солнечных батарей. М.: Энергоатомиздат. 1983. 360 с.
- 24 Иванов В. И., Аксенов А. И., Юшин А. М. Полупроводниковые оптоэлектронные приборы. Справочник. М.: Энергоатомиздат. 1988. 448 с.
- 25 Розеншер Э., Винтер Б. Оптоэлектроника. М.: Техносфера. 2004. 590 с.
- 26 Панченко В. Я. Глубокое каналирование и филаментация мощного лазерного излучения в веществе. 2009. 266 с.

АКАДЕМИЧЕСКАЯ ПОЛИТИКА КУРСА

Все виды работ необходимо выполнять и защищать в указанные сроки. Студенты, не сдавшие очередное задание или получившие за его выполнение менее 50% баллов, имеют возможность отработать указанное задание по дополнительному графику. Студенты, пропустившие лабораторные занятия по уважительной причине, отрабатывают их в дополнительное время в присутствии лаборанта, после допуска преподавателя. Студенты, не выполнившие все виды работ, к экзамену не допускаются. Кроме того, при оценке учитывается активность и посещаемость студентов во время занятий.

Будьте толерантны, уважайте чужое мнение. Возражения формулируйте в корректной форме. Плагиат и другие формы нечестной работы недопустимы. Недопустимы подсказывание и списывание во время сдачи СРС, промежуточного контроля и финального экзамена, копирование решенных задач другими лицами, сдача экзамена за другого студента. Студент, уличенный в фальсификации любой информации курса, несанкционированном доступе в Интранет, пользовании шпаргалками, получит итоговую оценку «F».

За консультациями по выполнению самостоятельных работ (СРС), их сдачей и защитой, а также за дополнительной информацией по пройденному материалу и всеми другими возникающими вопросами по читаемому курсу обращайтесь к преподавателю в период его офис-часов.

Оценка по буквенной	Цифровой	%-ное	Оценка по традиционной системе
системе	эквивалент баллов	содержание	
A	4,0	95-100	Отлично
A-	3,67	90-94	
B+	3,33	85-89	Хорошо
В	3,0	80-84	
B-	2,67	75-79	
C+	2,33	70-74	Удовлетворительно
С	2,0	65-69	1
C-	1,67	60-64]
D+	1,33	55-59	1
D-	1,0	50-54	1
F	0	0-49	Неудовлетворительно
I	-	-	«Дисциплина не завершена»
(Incomplete)			(не учитывается при вычислении <i>GPA</i>)
P	-	-	«Зачтено»
(Pass)			(не учитывается при вычислении GPA)
NP			«Не зачтено»
	-	-	
(No Pass)			(не учитывается при вычислении GPA)
W	-	-	«Отказ от дисциплины»
(Withdrawal)			(не учитывается при вычислении <i>GPA</i>)
AW			Снятие с дисциплины по академическим

(Academic Withdrawal)	1	причинам
		(не учитывается при вычислении <i>GPA</i>)
AU -		«Дисциплина прослушана»
(Audit)		(не учитывается при вычислении GPA)
Атт.	30-60	Аттестован
	50-100	
Не атт.	0-29	Не аттестован
	0-49	
R (Retake)		Повторное изучение дисциплины

Рассмотрено на заседании кафедры протокол № 36 от 10.06.14

Зав. кафедрой, профессор О. Ю. Приходько

Лектор А. А. Мигунова